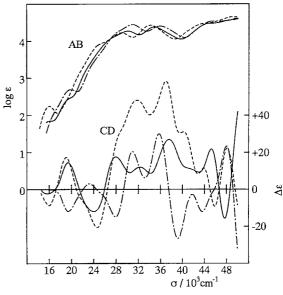
Chemistry Letters 1999

Chiral-Selective Formation of S-Bridged $Co^{III}Pd^{II}Co^{III}$ Trinuclear Complexes by Using trans(N)-[Co(D-pen-N,O,S)₂] as a Bidentate-S,S Complexed-Ligand (D-pen = D-Penicillaminate)


Takumi Konno,* Nikichi Matsuno, Ken-ichi Okamoto,[†] and Masakazu Hirotsu Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515 [†]Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571

(Received August 24, 1999; CL-990731)

The reaction of $[PdCl_2\{Co(aet)_2(en)\}]^+$ (aet = 2-aminoethanethiolate) with trans(N)- $[Co(D-pen-N,O,S)_2]^-$ (D-pen = D-penicillaminate) in water led to the formation of three optically active S-bridged $Co^{II}Pd^{II}Co^{II}$ complexes, $[Pd\{Co(D-pen-N,O,S)_2\}_2]^0$ (1), Λ - $[Pd\{Co(D-pen-N,O,S)_2\}\{Co(aet)_2(en)\}_2]^{4+}$ ($\Delta\Delta$ -3). The molecular structure of Λ -2 was determined by X-ray crystallography.

Since the discovery of an S-bridged Co^{III}Ni^{II}Co^{III} trinuclear complex with two C_2 -cis(S)-[Co(aet)₂(en)]⁺ units, [Ni-{Co(aet)₂(en)₂]⁴⁺, which is readily formed from [CoCl₂(en)₂]⁴ and [Ni(aet)₂] in water, our research interest has been directed toward S-bridged polynuclear complexes composed of bis(thiolato)cobalt(III) octahedral units. Recently, we have found that the reaction of [Ni{Co(aet)₂(en)}₂]⁴⁺ with [PdCl₄]²⁻ in a ratio of 1:1 gives an S-bridged Co^{III}Pd^{II}Co^{III} trinuclear complex [Pd{Co(aet)₂(en)}₂]⁴⁺, while the corresponding 1:2 reaction produces an S-bridged Co^{III}Pd^{II} dinuclear complex [PdCl₂- ${Co(aet)_2(en)}^{+.2}$ Furthermore, $[PdCl_2{Co(aet)_2(en)}]^+$ was found to be convertible to [Pd{Co(aet)₂(en)}₂]⁴⁺ by reacting with $[Ni\{Co(aet)_2(en)\}_2]^{4+}$, which acts as a donor of the cis(S)- $[Co(aet)_2(en)]^+$ unit.² A remarkable feature of the trinuclear structure in $[M{Co(aet)_2(en)}_2]^{4+}(M = Ni^{II}, Pd^{II})$ is the selective formation of the $\Delta\Delta$ and $\Lambda\Lambda$ isomers, which is in contrast to the fact that all three possible isomers ($\Delta\Delta$, $\Delta\Lambda$, and $\Delta\Lambda$) are formed for the S-bridged trinuclear structure in [M'{Co(aet)₃}₂]^{2+ or 3+} $(M' = Ni^{II}, Co^{III})$. Thus, it is expected that either Δ - or Λ -[PdCl₂{Co(aet)₂(en)}]⁺ is selectively incorporated in the Sbridged CoulPduCoul trinuclear structure by the reaction with some chiral bis(thiolato)cobalt(III) complex. In this paper, we wish to report that the reaction of $[PdCl_2\{Co(aet)_2(en)\}]^+$ with trans(N)-[Co(D-pen-N,O,S)₂]-4 leads not only to the chiralof formation Λ -[Pd{Co(D-pen-N, O, S)₂}selective $\{\text{Co(aet)}_2(\text{en})\}\}^{2+}$, but also to the production of $\Delta\Delta$ - $[Pd{Co(aet)_2(en)}_2]^{4+}$ and $[Pd{Co(D-pen-N,O,S)_2}]^0$.

Treatment of $[PdCl_2\{Co(aet)_2(en)\}]Cl\cdot 2H_2O^2$ with equimolar of trans(N)-K[Co(D-pen-N,O,S)₂]·2H₂O⁴ in water at 50 °C gave a deep brown solution, which was poured onto an SP-Sephadex C-25 column (Na⁺ form). Three bands, A-1 (yellowgreen), A-2 (brown), and A-3 (red-brown), were eluted with water, a 0.3 mol dm⁻³ aqueous solution of NaCl, and a 0.5 mol dm⁻³ aqueous solution of NaCl, respectively. The formation ratio was ca. A-1:A-2:A-3 = 1:2:1, which was estimated from the electronic absorption spectral data. The electronic absorption and CD spectra of the A-3 eluate were identical with those of $\Delta\Delta\text{-}[\mathrm{Pd}\{\mathrm{Co}(\mathrm{aet})_{\!2}(\mathrm{en})\}_2]^{4+}$ $(\Delta\Delta\text{--}3)$ having a D_2 symmetrical S-bridged trinuclear structure,2 and the elemental analytical data of the isolated brown complex were in good agreement with the formula of [Pd{Co(aet)₂(en)}₂]Cl₄·6H₂O.⁵ These results indicate that the A-3 eluate contained only the $\Delta\Delta$ isomer of $[Pd{Co(aet)_2(en)}_2]^{4+}$.

Figure 1. Electronic absorption and CD spectra of 1 (---), Λ -2 (--), and $\Delta\Delta$ -3 (---) in water.

As illustrated in Figure 1, the absorption spectral behavior of the A-2 eluate is very similar to that of 3 over the whole region. In the 13 C NMR spectrum the brown complex (Λ -2Cl₂·5H₂O), which was isolated from the A-2 eluate, exhibits five signals besides three signals which coincide well with three signals observed for 3.⁶ From these facts and elemental analysis, ⁶ it is assumed that 2 has an S-bridged Co^{II}Pd^{II}Co^{III} trinuclear structure in [Pd{Co(D-pen-N, O, S)₂}{Co(aet)₂(en)}]²⁺ having a C_2 symmetry. The CD spectrum of the A-2 eluate is almost enantiomeric to that of $\Delta\Delta$ -3, except the region of $30-38\times10^3$ cm⁻¹ (Figure 1), which suggests that the A-2 eluate contained only the Δ isomer of 2.

The molecular structure and absolute configuration for Λ -2 were established by a single-crystal X-ray analysis of the PF₆-salt.⁷ The number of the PF₆-anions implies that the complex cation 2 is divalent. As shown in Figure 2, the complex cation 2 consists of C_2 -cis(S)-[Co(aet)₂(en)]⁺ and trans(N)-[Co(D-pen-N,O,S)₂]⁻ octahedral units and one Pd^{II} atom. The two thiolato S atoms of each octahedral unit are bound to the central Pd^{II} atom to form a linear-type S-bridged Co^{III} trinuclear structure having a C_2 symmetry. While this S-bridged trinuclear structure corresponds well with that of [Pd{Co(aet)₂(en)}₂]⁴⁺, the central PdS₄ sphere in 2 is not so distorted from a square-planar to a tetrahedral geometry, compared with that in [Pd{Co(aet)₂(en)}₂]⁴⁺; the dihedral angle between the Pd1S1S2 and Pd1S3S4 planes in 2 (8.4°) is smaller than the corresponding angle in 3 (14.0°). The absolute

1244 Chemistry Letters 1999

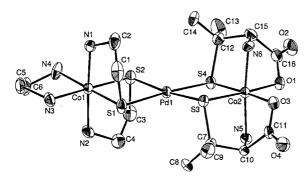


Figure 2. Perspective view of Λ -2. Selected bond distances (Å) and angles (°): Pd1-S1 = 2.329(3), Pd1-S2 = 2.331(4), Pd1-S3 = 2.335(3), Pd1-S4 = 2.317(3), Co1-S1 = 2.243(4), Co1-S2 = 2.263(4), Co1-N1 = 1.98(1), Co1-N2 = 2.01(1), Co1-N3 = 2.02(1), Co1-N4 = 2.02(1), Co2-S3 = 2.244(3), Co2-S4 = 2.228(4), Co2-O1 = 1.963(8), Co2-O3 = 1.957(9), Co2-N5 = 1.96(1), Co2-N6 = 1.97(1), S1-Pd1-S2 = 84.1(1), S3-Pd-S4 = 83.1(1), S1-Co1-S2 = 87.7(1), S3-Co2-S4 = 87.3(1).

configuration for the C_2 -cis(S)-[Co(aet)_2(en)]^+ unit was determined to be Λ on the basis of the known S configuration of the asymmetric carbon atom in the D-pen ligand, and this absolute structure was supported by the Flack parameter (-0.0054(7)).⁸ As can be seen from Figure 2, there exits little steric interaction between the Λ configurational C_2 -cis(S)-[Co(aet)_2(en)]^+ unit and the trans(N)-[Co(D-pen-N, O, S)_2] unit, in which the skew pair of the two five-membered N, S-chelate rings adopts the Λ configuration.

From the A-1 eluate, dark yellow-green complex ($1 \cdot 6H_2O$) was isolated after passing through a QAE-Sephadex A-25 column (Cl⁻ form) with water. ⁹ **1** is confidently assigned as a D_2 symmetrical trinuclear complex, $[Pd\{Co(D-pen-N,O,S)_2\}_2]^0$, in which the Pd^{11} atom is coordinated by four S atoms from two trans(N)- $[Co(D-pen-N,O,S)_2]^-$ units, by (i) elemental analysis, (ii) electronic absorption and CD spectroscopies, the spectral features of which coincide well with those of Λ -2 (Figure 1), (iii) ^{13}C NMR spectroscopy which gives five signals, (iv) molar conductivity in water ($1.5 \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$), which is compatible with the non-electrolyte. **1** was also prepared by the reaction of trans(N)- $K[Co(D-pen-N,O,S)_2]$ - $2H_2O$ with $Pd(NO_3)_2$ in water, which supports this assignment.

In the present study, it was found that a novel S-bridged $Co^{|||}Pd^{||}Co^{|||}$ trinuclear complex, $[Pd\{Co(D-pen-N,O,S)_2\}-\{Co(aet)_2(en)\}]^{2+}$ (2), is produced by the reaction of $[PdCl_2\{Co(aet)_2(en)\}]^+$ with $trans(N)-[Co(D-pen-N,O,S)_2]^-$. This result clearly indicates that $trans(N)-[Co(D-pen-N,O,S)_2]^-$ functions as an effective bidentate-S, S complexed-ligand, which replaces the two Cl atoms in $[PdCl_2\{Co(aet)_2(en)\}]^+$. Of two isomers (Δ and Δ) possible for Δ , only the Δ isomer was formed. To our knowledge, this is the first example of a chiral-selective formation of Δ -bridged polynuclear structure with use of a chiral complexed-ligand. Molecular model examinations reveal that a significant steric interaction comes into exist between the Δ -chelate rings of the Δ -cis(Δ -co(Δ -co)-[Co(Δ -co)-

unit adopts the Δ configuration. One may assume that Δ - $[\mathrm{PdCl}_2\{\mathrm{Co(aet)}_2(\mathrm{en})\}]^+ \text{ and excess } \mathit{trans}(N) - [\mathrm{Co(D-pen-}\mathit{N},O,S),]^$ remain in solution. However, the reaction solution was found to contain little Δ -[PdCl₂{Co(aet)₂(en)}]⁺ and trans(N)-[Co(D-Instead, the formation of [Pd{Co(D-penpen- $N, O, S)_2$]⁻. $N,O,S)_2\}_2]^0$ (1) and $\Delta\Delta$ -[Pd{Co(aet)₂(en)}₂]⁴⁺($\Delta\Delta$ -3), besides Δ -2, was recognized in a ratio of ca. 1: Λ -2: $\Delta\Delta$ -3 = 1:2:1, which that metathesis occurs between $\{Co(aet)_2(en)\}$ and trans(N)-[Co(D-pen-N, O, S)₂] relatively moderate conditions. Finally, it should be noted that the optical resolution of 3 has been achieved by fractional recrystallization with great difficulty.² On the other hand, the present procedure is straightforward and simple to afford $\Delta\Delta$ -3. Thus, the use of trans(N)- $[Co(D-pen-N,O,S)_2]^-$ as a chiral complexed-ligand may be applicable for the preparation of a variety of optically active S-bridged polynuclear complexes.

References and Notes

- T. Konno, K. Okamoto, and J. Hidaka, *Inorg. Chem.*, 31, 160 (1992);
 T. Konno, J. Hidaka, and K. Okamoto, *Bull. Chem. Soc. Jpn.*, 68, 1353 (1995).
- T. Konno, T. Machida, and K. Okamoto, *Bull. Chem. Soc. Jpn.*, 71, 175 (1998).
- D. H. Busch and D. C. Jicha, *Inorg. Chem.*, 1, 884 (1962); G.
 R. Brubaker and B. E. Douglas, *Inorg. Chem.*, 6, 1562 (1967); T. Konno, K. Okamoto, and J. Hidaka, *Acta Crystallogr.*, Sect. C, 49, 222 (1993).
- 4 The *trans(N)* isomer of [Co(D-pen-N,O,S)₂] has a *trans(N)·cis(O)·cis(S)* geometry. K. Okamoto, K. Wakayama, H. Einaga, S. Yamada, and J. Hidaka, *Bull. Chem. Soc. Jpn.*, **56**, 165 (1983).
- 5 Anal. Found: C, 15.78; H, 5.66; N, 12.20%. Calcd for $[Pd\{Co(aet)_2(en)\}_2]Cl_4\cdot 6H_2O = C_{12}H_{52}Cl_4Co_2N_8O_6PdS_4$: C, 16.03; H, 5.83; N, 12.47%. ¹³C NMR spectrum in D_2O (δ , ppm from DSS): 35.6 (-CH₂S of aet), 46.6 (-CH₂N of en), 56.1 (-CH₂N of aet).
- 6 Anal. Found: C, 21.49; H, 5.23; N, 9.38%. Calcd for [Pd{Co(D-pen)₂}{Co(aet)₂(en)}]Cl₂·5H₂O = C₁₆H₄₈Cl₂Co₂N₆-O₉PdS₄: C, 21.54; H, 5.42; N, 9.42%. ¹³C NMR spectrum in D₂O (δ, ppm from DSS): 30.9 (-CH₃ of pen), 35.3 (-CH₃ of pen), 35.6 (-CH₂S of aet), 46.6 (-CH₂N of en), 54.3 (-C(CH₃)₂S of pen), 55.9 (-CH₂N of aet), 75.4 (-CH(COO)N of pen), 183.7 (-COO of pen).
- 7 Anal. Found: C, 17.86; H, 4.03; N, 7.88%. Calcd for $[Pd\{Co(D-pen)_2\}\{Co(aet)_2(en)\}](PF_6)_2 \cdot 2H_2O = C_{16}H_{42}Co_2F_{12}-N_6O_6P_2PdS_4$; C, 18.18; H, 4.00; N, 7.95%. Crystal data for Λ -2 $(PF_6)_2 \cdot 2H_2O$: F. W. 1057.0, orthorhombic, $P2_12_12_1$, a=16.97(5), b=20.08(7), c=10.80(5) Å, V=3681(19) Å³, Z=4, $D_c=1.91$ g cm⁻³, $R(R_w)=0.051$ (0.065) for 3569 reflections with $I>2\sigma(I)$.
- 8 H. D. Flack, Acta Crystallogr., Sect A, 39, 876 (1983); H. D. Flack and G. Bernandinello, Acta Crystallogr., Sect A, 41, 500 (1985).
- 9 Anal. Found: C, 25.92; H, 5.07; N, 5.93%. Calcd for [Pd{Co(D-pen)₂}₂]·6H₂O = C₂₀H₄₈Co₂N₄O₁₄PdS₄: C, 26.08; H, 5.25; N, 6.08%. ¹³C NMR spectrum in D₂O (δ, ppm from DSS): 30.6 (-CH₃), 36.2 (-CH₃), 55.0 (-C(CH₃)₂S), 75.2 (-CH(COO)N), 183.5 (-COO).